Defining the Role of Fluid Shear Stress in the Expression of Early Signaling Markers for Calcific Aortic Valve Disease

نویسندگان

  • Ling Sun
  • Nalini M. Rajamannan
  • Philippe Sucosky
چکیده

Calcific aortic valve disease (CAVD) is an active process presumably triggered by interplays between cardiovascular risk factors, molecular signaling networks and hemodynamic cues. While earlier studies demonstrated that alterations in fluid shear stress (FSS) on the fibrosa could trigger inflammation, the mechanisms of CAVD pathogenesis secondary to side-specific FSS abnormalities are poorly understood. This knowledge could be critical to the elucidation of key CAVD risk factors such as congenital valve defects, aging and hypertension, which are known to generate FSS disturbances. The objective of this study was to characterize ex vivo the contribution of isolated and combined abnormalities in FSS magnitude and frequency to early valvular pathogenesis. The ventricularis and fibrosa of porcine aortic valve leaflets were exposed simultaneously to different combinations of sub-physiologic/physiologic/supra-physiologic levels of FSS magnitude and frequency for 24, 48 and 72 hours in a double cone-and-plate device. Endothelial activation and paracrine signaling were investigated by measuring cell-adhesion molecule (ICAM-1, VCAM-1) and cytokine (BMP-4, TGF-β1) expressions, respectively. Extracellular matrix (ECM) degradation was characterized by measuring the expression and activity of the proteases MMP-2, MMP-9, cathepsin L and cathepsin S. The effect of the FSS treatment yielding the most significant pathological response was examined over a 72-hour period to characterize the time-dependence of FSS mechano-transduction. While cytokine expression was stimulated under elevated FSS magnitude at normal frequency, ECM degradation was stimulated under both elevated FSS magnitude at normal frequency and physiologic FSS magnitude at abnormal frequency. In contrast, combined FSS magnitude and frequency abnormalities essentially maintained valvular homeostasis. The pathological response under supra-physiologic FSS magnitude peaked at 48 hours but was then maintained until the 72-hour time point. This study confirms the sensitivity of valve leaflets to both FSS magnitude and frequency and suggests the ability of supra-physiologic FSS levels or abnormal FSS frequencies to initiate CAVD mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ex Vivo Evidence for the Contribution of Hemodynamic Shear Stress Abnormalities to the Early Pathogenesis of Calcific Bicuspid Aortic Valve Disease

The bicuspid aortic valve (BAV) is the most common congenital cardiac anomaly and is frequently associated with calcific aortic valve disease (CAVD). The most prevalent type-I morphology, which results from left-/right-coronary cusp fusion, generates different hemodynamics than a tricuspid aortic valve (TAV). While valvular calcification has been linked to genetic and atherogenic predisposition...

متن کامل

Hemodynamic and cellular response feedback in calcific aortic valve disease.

This review highlights aspects of calcific aortic valve disease that encompass the entire range of aortic valve disease progression from initial cellular changes to aortic valve sclerosis and stenosis, which can be initiated by changes in blood flow (hemodynamics) and pressure across the aortic valve. Appropriate hemodynamics is important for normal valve function and maintenance, but pathologi...

متن کامل

Cross Talk between NOTCH Signaling and Biomechanics in Human Aortic Valve Disease Pathogenesis

Aortic valve disease is a burgeoning public health problem associated with significant mortality. Loss of function mutations in NOTCH1 cause bicuspid aortic valve (BAV) and calcific aortic valve disease. Because calcific nodules manifest on the fibrosa side of the cusp in low fluidic oscillatory shear stress (OSS), elucidating pathogenesis requires approaches that consider both molecular and me...

متن کامل

Role of Pathologic Shear Stress Alterations in Aortic Valve Endothelial Activation

Calcific aortic stenosis is the most common aortic valve (AV) disease and is triggered by an active inflammatory process involving endothelial activation and cytokine expression. Interfacing between the leaflet and the surrounding blood flow, shear stress is presumed to play an important role in endothelial injury. This study investigated the hypothesis that pathologic alterations in shear stre...

متن کامل

Hemodynamic Environments from Opposing Sides of Human Aortic Valve Leaflets Evoke Distinct Endothelial Phenotypes In Vitro

The regulation of valvular endothelial phenotypes by the hemodynamic environments of the human aortic valve is poorly understood. The nodular lesions of calcific aortic stenosis (CAS) develop predominantly beneath the aortic surface of the valve leaflets in the valvular fibrosa layer. However, the mechanisms of this regional localization remain poorly characterized. In this study, we combine nu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013